Descriptive Statistics - Indicators

Outlines

1. Introduction to Statistics
2. Descriptive Statistics
3. Central Tendency
4. Dispersion
5. Heterogeneity
6. Shape
7. Question Time

Introduction to Statistics

- Statistics plays an vital role in data science.
- In some cases, we may directly conduct data exploration approach (e.g., data visualization) to understand the distribution of your dataset, and even differentiate the characteristics between different features.
- However, we always face a dilemma that we cannot directly determine whether one feature is significantly different from another. Therefore, inferential statistics quantitatively present the difference between one distribution to another through a hypothesis testing.
- Due to time limitation, we will focus on descriptive statistics in the first two weeks, then inferential statistics.

Descriptive Statistics

- Descriptive statistics are used to describe the characteristics of data from a distribution perspective, including center tendency, dispersion, shape, heterogeneity, and graphs.

Deaths per million (7-day running average) - Unvaccinated - Vaccinated

Central Tendency - Indicators

Indicators	Meanings
Mean	The expectation/average in a set of data Arithmetic mean (AM) Geometric mean (GM) Harmonic mean (HM) Mid-rangeThe arithmetic mean of the maximum and minimum values of the data set
Median	The center value in a set of data
Mode	The most often value in a set of data
Sum	The total value of the data

Central Tendency - Q1

Question 1

Give one practical example for each statistic (i.e., mean, median, mode, and sum) and calculate their value by self-defined function.

Central Tendency - Mean

Arithmetic mean (AM)

The arithmetic mean (or simply mean) of a list of numbers, is the sum of all of the numbers divided by the number of numbers.

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

Geometric mean (GM)

The geometric mean is an average that is useful for sets of positive numbers, that are interpreted according to their product (as is the case with rates of growth) and not their sum (as is the case

$$
\bar{x}=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}=\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{n}}
$$ with the arithmetic mean)

Harmonic mean (HM)

The harmonic mean is an average which is useful for sets of numbers which are defined in relation
to some unit, as in the case of speed (i.e., distance per unit of time)

$$
\bar{x}=n\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{-1}
$$

Central Tendency

Question 2

Design a script to calculate and test the regularity (sorting by its value) of average values based on three mean definitions, including arithmetic, geometric, and harmonic mean. You may obtain three testing datasets from the internet or generating from random variables. Please notice that the testing data should be representative; otherwise, it will be meaningless.

Central Tendency - Mid-range \& Median

- Mid-range represents the center value of the dataset based on minimum and maximum value.

$$
\operatorname{mid}-\text { range }=\frac{\min \left(x_{i}\right)+\max \left(x_{i}\right)}{2}, \forall i>0
$$

- Unlike mid-range, median is also a common statistic to describe the center location of the dataset based on values.
- $1,2,3,4,5,6,7 \rightarrow$ median $=4$
$\cdot 1,2,3,4,5,6 \rightarrow$ median $=$?

Central Tendency - Mode \& Sum

- Mode is usually used to present the concept of consensus. For instance, we have a meeting to decide the catering company for our international conference; therefore, we need to vote for your favorite company. The catering company with the highest number of votes will be selected for our conference. The physical meaning of the highest number of votes is the same as the definition of mode.
- Sometimes, we want to know the overall performance between features or datasets; therefore, we may obtain the summation of all values together for comparison.

Dispersion

- In most cases, center tendency cannot represent the distribution or characteristics of dataset because of its variation. The figure provided below demonstrates that two distributions have the same mean but their variations are quite different. Therefore, if you only observe these datasets without variation, then you will obtain a biased explanation.

Dispersion - Indicators

Indicator	Equation $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
Standard deviation	$\sigma=\sqrt{\frac{\left(x_{i}-\bar{x}\right)^{2}}{n}}$
Interquartile range (IQR)	$I Q R=Q 3-Q 1$
Maximum and minimum	$\max (X), \min (X)$
Range	$\operatorname{range}=\max (X)-\min (X)$
Average absolute deviation (AAD)	$A A D=\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}-\bar{x}\right\|$
Mean absolute deviation (MAD)	$M A D=\operatorname{median}\left(\left\|x_{i}-\operatorname{median}(X)\right\|\right)$
Median absolute deviation (MAD)	

Dispersion - Dimensionless

- All descriptive statistics are affected by the sample sizes or unit.
- To overcome this dilemma, we can adopt dimensionless quantity concept to measure the dispersion characteristics of the dataset.

Coefficient of Variance (CV)	Quartile Coefficient of Dispersion	Variance	Variance-to-mean Ratio (VMR) ${ }^{[1]}$
$C V=\frac{s}{\bar{x}}$	$\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$	$\operatorname{var}(x)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	$D=\frac{s^{2}}{\bar{x}}$

[1] index of dispersion, dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR)

Dispersion - Dimensionless

- Variance-to-mean Ratio (VMR)

$$
D=\frac{s^{2}}{\bar{x}}
$$

Constant random variable $\quad \mathrm{VMR}=0 \quad$ not dispersed
Binomial distribution
Poisson distribution
$0<\mathrm{VMR}<1$ under-dispersed
$\mathrm{VMR}=1$
Negative binomial distribution VMR > 1 over-dispersed

Poisson Distribution

- From Wiki:

The Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event.

$$
\operatorname{Pr}(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Binomial Distribution

- From Wiki:

The binomial distribution with Indicators n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes-no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability $q=1-p$).

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\binom{n}{k} p^{k}(1-p)^{n-k}, \\
& \text { where }\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Negative Binomial Distribution

- From Wiki:

The negative binomial distribution is a discrete probability distribution that models the number of failures (denoted k) in a sequence of independent and identically distributed Bernoulli trials before a specified (non-random) number of successes (denoted r) occurs.
$\operatorname{Pr}(X=k)=\binom{k+r+1}{r-1} p^{r}(1-p)^{k}$

Dispersion - Variance

Question 3

The variance of random variable X is the expected value of the squared deviation from the mean of $X . \mu=E[X]$:

$$
\operatorname{Var}(X)=\operatorname{Cov}(X, X)=E\left[(X-\mu)^{2}\right]
$$

Please expand the variance to the simplest form.

Percentile in Normal Distribution

- For a very large population following a normal distribution, it might be plotted as right-hand-side figure.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

-We can use standard deviation to present the
 percentile.

Heterogeneity

- Heterogeneity is one of the crucial features to describe the internal differences. For example, there are 100 people in the party A, where 50\% are doctors, 20% are sales, 10% are engineers, 10% are consultants, and 10% are secretaries. In the party B , all participants are doctors. How do you quantitatively describe the job distribution differences between party A and party B?
- Here, we will introduce three common indictors: (information) entropy, Gini coefficient, and Herfindahl-Hirschman Index

Entropy

- Entropy (information entropy or Shannon entropy) is a mathematical form to demonstrate the heterogeneity between samples.

$$
H(X):=-\sum_{x \in X} p(x) \log _{b} p(x)=\mathbb{E}[-\log p(X)], \text { where } b=2, \text { e, or } 10
$$

Question 5

What do you observe the relationship between probability and entropy from the left-hand-side figure?

Gini Coefficient

- From Wiki:

The Gini coefficient is an index for the degree of inequality in the distribution of income/wealth, used to estimate how far a country's wealth or income distribution deviates from an equal distribution.

$$
\begin{aligned}
& G=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|}{2 \sum_{i=1}^{n} \sum_{j=1}^{n} x_{j}}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|}{2 n \sum_{j=1}^{n} x_{j}}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|}{2 n^{2} \bar{x}}, \\
& G=\frac{1}{2 \mu} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x) p(y)|x-y| d x d y
\end{aligned}
$$

Gini Coefficient

Graphical representation of the Gini coefficient: The graph shows that the Gini coefficient is equal to
 the area marked A divided by the sum of the areas marked A and B, that is, Gini $=A /(A+B)$. It is also equal to $2 A$ and to $1-2 B$ due to the fact that $A+B=$ 0.5 (since the axes scale from 0 to 1).

Gini Coefficient

	Country	Subregion	Region	Gini ${ }^{[5][6]}$	
				\％	Year
	＊	＊	＊	－	＊
1	2as Afghanistan	Southern Asia	Asia		
	World				
2	Slovakia	Eastern Europe	Europe	23.2	2019
3	E Belarus	Eastern Europe	Europe	24.4	2020
4	\ldots Slovenia	Southern Europe	Europe	24.4	2019
5	EArmenia	Western Asia	Asia	25.2	2020
6	－Czech Republic	Eastern Europe	Europe	25.3	2019
7	－Ukraine	Eastern Europe	Europe	25.6	2020
8	－0\｜l Moldova	Eastern Europe	Europe	26.0	2019
9	United Arab Emirates	Western Asia	Asia	26.0	2018
10	븥 Iceland	Northern Europe	Europe	26.1	2017
11	－Belgium	Western Europe	Europe	27.2	2019
12	－Algeria	Northern Africa	Africa	27.6	2011
13	［ Denmark	Northern Europe	Europe	27.7	2019
14	－Finland	Northern Europe	Europe	27.7	2019
15	타ํ슴 Norway	Northern Europe	Europe	27.7	2019
16	－．Kazakhstan	Central Asia	Asia	27.8	2018
17	■ East Timor	South－eastern Asia	Asia	28.7	2014
18	＝Croatia	Southern Europe	Europe	28.9	2019
19	¢ Kosovo	Eastern Europe	Europe ${ }^{[a]}$	29.0	2017

47	－6．Portugal	Southern Europe	Europe	32.8	2019
48	－Tunisia	Northern Africa	Africa	32.8	2015
49	－Japan	Eastern Asia	Asia	32.9	2013
50	Bosnia and Herzegovina	Southern Europe	Europe	33.0	2011
51	※K North Macedonia	Southern Europe	Europe	33.0	2018
52	\％Greece	Southern Europe	Europe	33.1	2019
53	＋Switzerland	Western Europe	Europe	33.1	2018
54	\｜+ ｜Canada	Northern America	Americas	33.3	2017
55	－Taiwan	Eastern Asia	Asia	33.6	2014
56	－Azerbaijan	Western Asia	Asia	33.7	2008
57	드 Jordan	Western Asia	Asia	33.7	2010
58	二 Tajikistan	Central Asia	Asia	34.0	2015
59	－Luxembourg	Western Europe	Europe	34.2	2019
60	ESudan	Northern Africa	Africa	34.2	2014
61	208 Australia	Australia，New Zealand	Oceania	34.3	2018
62	E Spain	Southern Europe	Europe	34.3	2019
63	$\%$ Georgia	Western Asia	Asia	34.5	2020
64	＝Latvia	Northern Europe	Europe	34.5	2019

144	드t Singapore	South－eastern Asia	Asia	45.9	2017
145	＝Nicaragua	Central America	Americas	46.2	2014
146	－Cameroon	Middle Africa	Africa	46.6	2014
147	－Burkina Faso	Western Africa	Africa	47.3	2018
148	－Ecuador	South America	Americas	47.3	2020
149	$=$ Honduras	Central America	Americas	48.2	2019
150	｜－｜Guatemala	Central America	Americas	48.3	2014
151	Q Brazil	South America	Americas	48.9	2020
152	T Congo	Middle Africa	Africa	48.9	2011
153	三 Costa Rica	Central America	Americas	49.3	2020
154	－Belize	Central America	Americas	49.8	2014
155	－Panama	Central America	Americas	49.8	2019
156	三Zimbabwe	Eastern Africa	Africa	50.3	2019
157	－${ }^{\text {a }}$ Saint Lucia	Caribbean	Americas	51.2	2016
158	－Angola	Middle Africa	Africa	51.3	2018
159	－Botswana	Southern Africa	Africa	53.3	2015
160	\＃Hong Kong	Eastern Asia	Asia	53.9	2016
161	Mozambique	Eastern Africa	Africa	54.0	2014
162	－Colombia	South America	Americas	54.2	2020
163		Southern Africa	Africa	54.6	2016
164	플 Central African Republic	Middle Africa	Africa	56.2	2008
165	－Zambia	Eastern Africa	Africa	57.1	2015
166	E Suriname	South America	Americas	57.9	1999
167	\％Namibia	Southern Africa	Africa	59.1	2015
168	South Africa	Southern Africa	Africa	63.0	2014

Gini Coefficient

- Question 4

How to define the equality level between wealth or income within a country via Gini coefficient?

- Below 0.2
- 0.2-0.29
- 0.3-0.39
- 0.4-0.59
- Higher than 0.6

Herfindahl-Hirschman Index (HHI)

- From Wiki:

 Herfindahl-Hirschman Index (HHI) is a measure of the size of firms in relation to the industry they are in and is an indicator of the amount of competition among them.$$
H H I=\sum_{i=1}^{N}\left(\frac{x_{i}}{\sum_{i=1}^{N} x_{i}}\right)^{2}=\sum_{i=1}^{N} S_{i}^{2}
$$

where N is the number of company, x_{i} is the market scale of the i-th company, and S_{i} is the market share of the $i-t h$ company.

Herfindahl-Hirschman Index (HHI)

Level	Nature of Competition	Range of Herfindahl
$\mathbf{1}$	Perfect competition	Usually below 0.2
$\mathbf{2}$	Monopolistic competition	Usually below 0.2
$\mathbf{3}$	Oligopoly	$0.2-0.6$
$\mathbf{4}$	Monopoly	0.6 and above

Herfindahl-Hirschman Index (HHI)

Internet Advertising Market Share, 2019, Revenue

[^0]
Question 6

Design a function to calculate the HHI of internet advertising market share in 2019 by revenue.

Shape

- For each type of distribution, they have their own variables to describe the shape of distribution, such as lambda for Poisson distribution, mean and standard deviation for normal distribution.
- In many situations, when independent random variables are summed up, their properly normalized sum tends toward a normal distribution even if the original variables themselves are not normally distributed - central limit theorem (CLT).

 of the mean

Shape - Indicators

- If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis.

	Expected Value	Variance	Skewness	Kurtosis
Discrete	$\mu=\sum_{i=1}^{\infty} P\left(X=x_{i}\right)$	$\sigma^{2}=\sum_{i=1}^{\infty} P\left(x_{i}\right)\left(x_{i}-\mu\right)^{2}$		
Continuous	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}\left(x_{i}-\mu\right)^{2} f(x) d x$	$\gamma=\frac{M_{3}}{\sigma^{3}}$	$\kappa=\frac{M_{4}}{\sigma^{4}}$

$$
\text { Kth central moment for discrete } \Rightarrow M_{k}=\sum_{i=1}^{\infty} P\left(x_{i}\right)\left(x_{i}-\mu\right)^{k}
$$

$$
\text { Kth central moment for continuous } \Rightarrow M_{k}=\int_{-\infty}^{\infty}\left(x_{i}-\mu\right)^{k} f(x) d x
$$

Shape - Q7

| | Expected Value | Variance | Skewness |
| :---: | :---: | :---: | :---: |\quad Kurtosis

Question 7

Describe the characteristics of the following distributions.
(1) Skewness = 0; (2) Skewness < 0; (3) Skewness > 0;
(4) Kurtosis = 0; (5) Kurtosis < 0; (6) Kurtosis > 0.

Question Time

If you have any questions, please do not hesitate to ask me.

The End Thank you for your attention))

[^0]: $■$ Google \square Facebook \square Alibaba \square Amazon $■$ Baidu $■$ Tencent $■$ Others

